Светодиодные источники света на сегодняшний день пользуются наибольшим успехом среди потребителей. Особенно популярны диодные фонари. Обзавестись светодиодным ручным фонариком можно по-разному: его можно купить в магазине или же сделать своими руками.

Светодиодный ручной фонарик

Многие люди, которые разбираются в электронике хотя бы немного, по разным причинам, все чаще предпочитают делать такие осветительные приспособления своими руками. Поэтому в данной статье будут рассмотрены несколько вариантов того, как можно самостоятельно сделать диодный ручной фонарик.

Преимущества led-светильников

На сегодняшний день одним из самых выгодных эффективных источников света считается светодиод. Он способен создавать яркий световой поток при небольших мощностях, а также имеет массу других положительных технических характеристик.
Сделать своими руками фонарик из диодов стоит по следующим причинам:

  • отдельные светодиоды стоят не дорого;
  • все моменты сборки достаточно легко реализуются своими руками;
  • самодельный осветительный прибор может работать на батарейках (двух или одной);

Обратите внимание! По причине низкого потребления электроэнергии светодиодов во время работы существует много схем, где в качестве питания прибора выступает всего одна батарейка. При необходимости ее можно будет заменить аккумулятором соответствующих габаритов.

Светодиоды и их свечение

Кроме этого получившийся светильник прослужить значительно дольше, чем аналоги. При этом можно выбрать любой цвет свечения (белый, желтый, зеленый и т.д.). Естественно, что самыми актуальными здесь цветами будут желтый и белый. Но, если нужно сделать особенную подсветку какого-нибудь торжества, то можно использовать и светодиоды с более экстравагантным цветом свечения.

Где можно использовать и особенности светильника

Очень часто бывает ситуация, когда нужен свет, но нет возможности установить систему подсветки и стационарных осветительных приборов. В такой ситуации на выручку придёт переносной светильник. Светодиодный ручной фонарик, который можно сделать с одной или несколькими батарейками, найдет обширное применение в быту:

  • его можно использовать для работы на садовом участке;
  • осуществлять подсветку чуланов и прочих помещений, где отсутствует подсветка;
  • использовать в гараже при осмотре транспортного средства в смотровой яме.

Обратите внимание! При желании по аналогии с ручным фонариком можно сделать модель светильника, которую будет легко установить на любую поверхность. В таком случае фонарик станет уже не переносным, а стационарным источником света.

Чтобы сделать своими руками светодиодный фонарик ручного типа нужно помнить, прежде всего, о недостатках диодов. Действительно широкому распространению led-продукции препятствуют такие ее недостатки, как нелинейная вольтамперная характеристика или ВАХ, а также наличие «неудобного» напряжения для питания. В связи с этим все светодиодные светильники содержат специальные преобразователи напряжения, которые работают от индуктивных накопителей энергии или трансформаторов. В связи с этим перед тем, как приступать к самостоятельной сборке такого светильника своими руками, нужно подобрать необходимую схему.
Собираясь изготовить ручной фонарик из светодиодов необходимо в обязательном порядке продумать его питание. Можно сделать такой светильник на батарейках (двух или одной).
Рассмотрим несколько вариантов того, как можно изготовить диодный ручной фонарик.

Схема со сверхярким светодиодом DFL-OSPW5111Р

Данная схема будет предполагать питание от двух, а не от одной, батарейки. Схема по сборки данного типа осветительного прибора имеет следующий вид:

Схема сборки фонарика

Эта схема предполагает питание светильника от батареек типа АА. При этом в качестве источника света будут взят сверхяркий светодиод DFL-OSPW5111Р с белым типом свечения, имеющий яркость 30 Кд и потребление тока на уровне 80 мА.
Чтобы сделать своими руками мини-фонарик из светодиодов на батарейках, нужно запастись следующими материалами:

  • две батарейки. Достаточно будет обычной «таблетки», но можно использовать и другие виды батареек;
  • «карман» для источника питания;

Обратите внимание! Лучшим выбором будет «карман» для батарейки, сделанный на старой материнской плате.

  • сверхяркий диод;

Сверхяркий диод для фонаря

  • кнопка, с помощью которой будет включаться самодельный светильник;
  • клей.

Из инструментов в данной ситуации нужны будут:

  • пистолет для клея;
  • припой и паяльник.

Когда все материалы и инструменты собраны, можно приступать к работе:

  • сначала из старой материнской платы извлекаем карман батарейки. Для этого нам понадобиться паяльник;

Обратите внимание! Выпаивание детали следует делать очень аккуратно, чтобы в процессе не повредить контакты кармана.

  • кнопку для включения фонарика следует припаять к плюсовому полюсу кармана. Только после этого к ней будет припаиваться ножка светодиода;
  • вторую ножку диода необходимо припаять к минусовому полюсу;
  • в результате получиться простая электрическая цепь. Она будет замыкаться при нажатии кнопки, что и приведет к свечению источника света;
  • после сборки цепи устанавливаем батарейку и проверяем ее работоспособность.

Готовый фонарь

Если схема была собрана правильно, то при нажатии на кнопку светодиод начнет светиться. После проверки, для повышения прочности цепи, электрические спайки контактов можно залить горячим клеем. После этого цепи помещаем в корпус (можно использовать от старого фонарика) и пользуемся на здоровье.
Плюсом такого метода сборки являются небольшие габариты светильника, который легко поместиться в кармане.

Второй вариант сборки

Еще одним способом сделать светодиодный самодельный фонарик – использовать старый светильник, в котором перегорела лампочка. В данном случае можно также запитать прибор одной батарейкой. Здесь для сборки будет использоваться следующая схема:

Схема для сборки карманного фонарика

Сборка по этой схеме происходит следующим образом:

  • берем ферритовое кольцо (его можно извлечь из люминесцентной лампы) и наматываем на него 10 витков провода. Провод должен иметь сечение 0,5-0,3 мм;
  • после того, как намотали 10 витков, делаем отвод или петельку и снова мотает 10 витков;

Обмотанное ферритовое кольцо

  • далее по схеме соединяем трансформатор, светодиод, батарейку (одной пальчиковой будет вполне достаточно) и транзистор КТ315. Можно еще поставить конденсатор для яркости свечения.

Собранная схема

Если диод не засиял, значит необходимо поменять полярность батарейки. Если не помогло, то дело было не в батарейке и нужно проверить корректность подключения транзистора и источника света. Теперь дополняем нашу схему оставшимися деталями. Теперь схема должна иметь следующий вид:

Схема с дополнениями

При включении в схему конденсатора С1 и диода VD1, диод начнет светить намного ярче.

Визуализации схемы с дополнениями

Теперь только осталось выбрать резистор. Лучше всего ставить переменный резистор на 1,5 кОма. После этого нужно отыскать то место, в котором светодиод буде светит ярче всего. Далее сборка фонарика с одной батарейкой предполагает проведение следующих действий:

  • теперь разбираем старый светильник;
  • из узкого однобокого стеклотекстолита вырезаем круг, который должен соответствовать диаметру трубки осветительного прибора;

Обратите внимание! Под соответствующий диаметр трубки стоит подбирать все детали электроцепи.

Детали подходящего размера

  • далее размечаем плату. После этого ножиком разрезаем фольгу и лудим плату. Для этого паяльник должен иметь специальное жало. Его можно сделать своими руками, накрутив на конец инструмента проволоку шириной 1-1,5 мм. Конец проволоки нужно заострить и залудить. Должно получиться примерно так;

Подготовленное жало паяльника

  • припаиваем к подготовленной плате детали. Она должна иметь следующий вид:

Готовая плата

  • после этого соединяем припаянную плату с первоначальной схемой и проверяем ее работоспособность.

Проверка работоспособности схемы

После проверки нужно хорошо припаять все детали. Особенно важно нормально припаять светодиод. Также стоит уделить внимание контактам, идущим к одной батарейке. В итоге должно получиться следующее:

Плата с припаянным светодиодом

Теперь осталось только вставить все в фонарик. После этого края платы можно покрыть лаком.

Готовый светодиодный самодельный фонарик

Такой фонарик можно запитать даже от одной разряженной батарейки.

Разновидности схем сборки

Для того чтобы своими руками собрать светодиодный фонарик, можно использовать самые разнообразные схемы и варианты сборки. Правильно подобрав схему можно даже сделать мигающий осветительный прибор. В такой ситуации следует использовать специальный мигающий светодиод. Такие схемы обычно включают транзисторы и несколько диодов, которые подключаются к различным источникам питания, в том числе и к батарейкам.
Есть варианты сборки ручного диодного светильника, когда вообще можно обойтись без батареек. К примеру, в такой ситуации можно использовать следующую схему:

Как правило, от электрических фонарей желательно получить максимальную яркость свечения. Однако иногда требуется освещение, которое минимально нарушит адаптацию зрения к темноте. Как известно, человеческий глаз может менять свою светочувствительность в довольно широких пределах. Это позволяет с одной стороны видеть в сумерках и при плохом освещении, а с другой стороны не ослепнуть в яркий солнечный день. Если ночью выйти из хорошо освещенного помещения на улицу, то первые мгновения почти ничего не будет видно, но постепенного глаза приспособятся к новым условиям. Полная адаптация зрения к темноте занимает около одного часа, после нее глаз достигает максимальной чувствительности, которая в 200 тыс. раз выше дневной. В таких условиях даже кратковременное воздействие яркого света (включение карманного фонаря, фары автомобиля) сильно снижает чувствительность глаз. Однако даже при полной адаптации к темноте бывает необходимо, к примеру, прочитать карту, подсветить шкалу прибора и тому подобное, а для этого требуется искусственное освещение. Поэтому любителям астрономии, а также всем кому необходимо рассмотреть, что-то в условиях плохого освещения требуется не яркий фонарь.

При изготовлении астрономического фонаря не следует стремиться к излишней миниатюризации. Корпус астрономического фонаря должен быть светлым и достаточно крупным, так что бы в условиях плохого освещения его можно было легко найти (иначе уронишь под ноги и будешь фонарик полчаса искать). В качестве корпуса использована дорожная мыльницы. Выключатели должны быть такими, что бы их было легко использовать на ощупь и в перчатках.

Глаз максимально чувствителен к свету с длинной волны 550 нм (зеленый свет), а в темноте максимум чувствительности глаза смещается в сторону коротких волн до 510 нм (эффект Пуркинье ). По этому в астрономическом фонаре предпочтительно использовать красные светодиоды, а не синие, или тем более зеленые. К красному свету чувствительность глаз меньше, а значит красное освещение меньше нарушит адаптацию к темноте.

Кроме основного фонаря можно изготовить несколько простых маячков для подсветки различных предметов. Дело в том, что мало кто из любителей астрономии может позволить себе иметь полноценную любительскую обсерваторию. Большинство наблюдает с балкона. А в тесном пространстве, да еще и в темноте легко можно зацепить ногой и завалить штатив телескопа или фотоаппарата. Кроме этого неожиданно встретится в темноте коленом с углом какого-нибудь ящика или тумбочки, то же удовольствие небольшое. Поэтому целесообразно использовать простейшие мини фонарики для подсветки ножек штатива, острых углов мебели, полочки с принадлежностями и так далее. В принципе для этой цели подойдет просто светодиод, закрепленный липкой лентой на 3 В элементе питания типа 2032 или подобном. Но, во первых, без токоограничительного резистора свечение светодиода слишком яркое, во вторых даже в самом простом фонарике желательно иметь выключатель. Руководствуясь этими соображениями, было изготовлено несколько таких маячков.

В качестве выключателя использован геркон в паре с магнитом. Крепление 3 В элемента питаниясамодельное. Последовательно со светодиодом включается токоограничительный резистор, его номинал надо подбирать так, что бы в темноте при прямом взгляде на линзу светодиода свет не слепил глаза даже с близкого расстояния. В разных маячках можно использовать светодиоды разных цветов, для облегчения опознавания, при этом, помня, что к свету с разной длиной волны глаз имеет не одинаковую чувствительность. Можно применить мигающие светодиоды.

В дополнении еще пара конструкций простых LED фонарей. Конкретно описанные ниже конструкции для астрономических целей не предназначались, но они легко могут быть адаптированы, для подобного использования.

Простой водонепроницаемый фонарик можно сделать на основе баночки от фотопленки. Нам понадобится: новая баночка от фотопленки, светодиод 3 В, 2-3 геркона, литиевая батарейка 3 В типоразмера 2032 , вата (наполнитель корпуса), колодка для батарейки от старого фонарика. Для обеспечения водонепроницаемости надо, чтобы в корпусе фонарика не было отверстий. Так что в качестве выключателя, можно использовать герметизированные контакты. Для надежного срабатывания лучше взять 2-3 геркона, так как при повороте вдоль продольной оси чувствительность геркона изменяется. Итак, собираем фонарик по схеме.

Сгибаем провода так, чтобы все поместилось в корпусе, пустое пространство я заполнил ватой, чтобы ничего не болталось. Помещаем схему в корпус. Важно, чтобы баночка от фотопленки была новой, т.е. чтобы крышка закрывалась максимально плотно. В качестве выключателя подойдет любой магнит. Фонарик данной конструкции продолжал работать после 10 часового пребывания в воде. Вата осталась сухой. Так, что длительное лежание в луже такому устройству не повредит.

Наверняка у радиолюбителей имеются колодки от вышедших из строя 9 В батарей типа «Крона». На основе такой колодки можно собрать простой фонарик, которому фактически не нужен корпус. К контактам колодки через токоограничительный резистор подключается светодиод.

Снаружи светодиод и резистор обматываются несколькими слоями изоляционной ленты. В надетом на батарею положении фонарик образует с ней единый блок.

Таким образом, можно под самодельный фонарик приспособить практически любой подходящий корпус и батарейку, правда ниже 3,5 В уже потребуется ставить светодиода. Спасибо, за внимание. Автор Denev .

Обсудить статью СВЕТОДИОДНЫЕ ФОНАРИКИ СВОИМИ РУКАМИ


Делаем фонарик на светодиодах своими руками

Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5 V LED FlashLight

Обычно, для работы синего или белого светодиода требуется 3 - 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with 3 - 3.5 V, like from a 3 V lithium coin cell.

Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка




Параметры используемого трансформатора:
Обмотка, идущая на светодиод, имеет ~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет ~30 витков провода 0.1мм.
Базовый резистор в этом случае имеет сопротивление около 2К.
Вместо R1 желательно поставить подстроечный резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его сопротивление, заменив потом его постоянным резистором полученного номинала.

Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков <15.



Куски проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца разных проводов.
Схему можно расположить внутри подходящего корпуса.
Внедрение такой схемы в фонарь, работающий от 3V существенно продлевает, продолжительность его работы от одного комплекта батареек.











Вариант исполнения фонаря от одной батарейки 1,5в.





Транзистор и сопротивление помещаются внутрь ферритового кольца



Белый светодиод работает от севшей батарейки ААА


Вариант модернизации «фонарик – ручка»


Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек.
Важный момент : мотать катушки нужно в разные стороны.

Фотографии фонарика:
выключатель находится в кнопке «авторучки», а серый металлический цилиндр проводит ток.










По типоразмеру батарейки делаем цилиндр.



Его можно изготовить из бумаги, или использовать отрезок любой жесткой трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали.
Кольцо из феррита не влезло бы в фонарь, поэтому использовался цилиндр из аналогичного материала.



Цилиндр из катушки индуктивности от старого телевизора.
Первая катушка - около 60 витков.
Потом вторая, мотается в обратную сторону опять 60 или около того. Витки скрепляются клеем.

Собираем преобразователь:




Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Получилось следующее:


Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « - », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Теперь следует изготовить «ламподиод».


Внимание: на цоколе должен быть минус светодиода.

Сборка:

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль).

Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.


Современный фонарик c режимом эксплуатации светодиода питанием постоянным стабилизированным током.


Схема стабилизатора тока работает следующим образом:
При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4V, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 и Т2 закроются, Т3 -- откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях :
Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3А и напряжение более 30 В.
Диод D1 должен быть обязательно с барьером Шоттки на ток более 1А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%.
Катушка индуктивности самодельная, мотают ее проводом не тоньше 0,6 мм, лучше - жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания, а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.
Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5.
При необходимости ток может быть увеличен до 1А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.
Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.



Светодиодный фонарь из калькулятора Б3-30

В основу преобразователя взята схема калькулятора Б3-30, в импульсном источнике питания которого используется трансформатор толщиной всего 5 мм, имеющий две обмотки. Использование импульсного трансформатора от старого калькулятора позволило создать экономичный светодиодный фонарь.

В результате получилась очень простая схема.


Преобразователь напряжения выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе VT1 и трансформаторе Т1. Импульсное напряжение с обмотки 1-2 (по принципиальной схеме калькулятора Б3-30) выпрямляется диодом VD1 и подается на сверхъяркий светодиод HL1. Конденсатор С3 фильтр. За основу конструкции взят фонарь китайского производства рассчитанного на установку двух элементов питания типа АА. Преобразователь монтируется на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5 мм рис.2 размерами, заменяющими один элемент питания и вставляемой в фонарь вместо него. К торцу платы обозначенной знаком «+» припаивается контакт, изготовленный из двухсторонне фольгированного стеклотекстолита диаметром 15мм, обе стороны соединяются перемычкой и облуживаются припоем.
После установки на плату всех деталей торцевой контакт «+» и трансформатор Т1 заливаются термоклеем для увеличения прочности. Вариант компоновки фонаря показан на рис.3 и в конкретном случае зависит от типа используемого фонаря. В моем случае никакой доработки фонаря не потребовалось, отражатель имеет контактное кольцо, к которому подпаивается минусовой вывод печатной платы, а сама плата крепится к отражателю с помощью термоклея. Печатная плата в сборе с отражателем вставляется вместо одного элемента питания и зажимается крышкой.

В преобразователе напряжения использованы малогабаритные детали. Резисторы типа МЛТ-0,125, конденсаторы С1 и С3 импортные, высотой до 5 мм. Диод VD1 типа 1N5817 с барьером Шотки, при его отсутствии можно использовать любой выпрямительный диод, подходящий по параметрам, желательно германиевый ввиду более малого падения напряжения на нем. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами. При отсутствии вышеуказанного трансформатора его можно изготовить самостоятельно. Намотка производится на ферритовое кольцо типоразмера К10*6*3 магнитной проницаемостью 1000-2000. Обе обмотки наматываются проводом ПЭВ2 диаметром от 0,31 до 0,44 мм. Первичная обмотка имеет 6 витков, вторичная 10 витков. После установки такого трансформатора на плату и проверки работоспособности его следует закрепить на ней с помощью термоклея.
Испытания фонаря с элементом питания типа АА представлены в таблице 1.
При испытании использовалась самая дешевая батарейка типа АА стоимостью всего 3 р. Начальное напряжение под нагрузкой составило 1,28 В. На выходе преобразователя напряжение, измеренное на сверхярком светодиоде 2,83 В. Марка светодиода неизвестна, диаметр 10 мм. Общий потребляемый ток 14 mА. Суммарное время работы фонаря составило 20 часов непрерывной работы.
При снижении напряжения на элементе питания ниже 1V яркость заметно падает.
Время, ч V батареи, В V преобр., В
0 1,28 2,83
2 1,22 2,83
4 1,21 2,83
6 1,20 2,83
8 1,18 2,83
10 1,18 2.83
12 1,16 2.82
14 1,12 2.81
16 1,11 2.81
18 1,11 2.81
20 1,10 2.80


Самодельный фонарик на светодиодах

Основа - фонарик «VARTA» с питанием от двух батареек типа АА:
Поскольку диоды имеют сильно нелинейную ВАХ необходимо оснастить фонарь схемой для работы на светодиоды, которая обеспечит постоянную яркость свечения по мере разряда батареи и сохранит работоспособность при возможно более низком напряжении питания.
Основа стабилизатора напряжения, это микромощный повышающий DC/DC конвертор MAX756.
По заявленным характеристикам он работает при снижении входного напряжения до 0.7В.

Схема включения - типовая:



Монтаж выполнен навесным способом.
Электролитические конденсаторы - танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки - SM5818. Дроссели пришлось соединить два в параллель, т.к. не оказалось подходящего номинала. Конденсатор С2 - К10-17б. Светодиоды - сверхяркие белые L-53PWC «Kingbright».
Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.

Выходное напряжение стабилизатора в данной схеме включения равно 3.3V. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1V, то лишние 200мV пришлось гасить на резисторе, включенном последовательно с выходом.
Кроме этого, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось - различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции.

Потрошится родная лампочка, и во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу. Плюсовые выводы (по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. «Ламподиод», вставляется на место обычной лампочки накаливания.

Тестирование:
Стабилизация выходного напряжения (3.3V) продолжалась вплоть до снижения напряжения питания до ~1.2V. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5V! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА.

Немного о КПД.
КПД схемы около 63% при свежих батарейках. Дело в том, что миниатюрные дроссели, использованные в схеме, имеют чрезвычайно высокое омическое сопротивление - около 1.5ом
Решение кольцо из µ-пермаллоя с проницаемостью порядка 50.
40 витков провода ПЭВ-0.25, в один слой - получилось около 80мкГ. Активное сопротивление около 0.2 Ом, а ток насыщения по расчетам - более 3А. Выходной и входной электролит меняем на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ.


Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device - ADP1110.



Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно спецификации фирмы-производителя, выпускается в 8 вариантах:

Модель Выходное напряжение
ADP1110AN Регулируемое
ADP1110AR Регулируемое
ADP1110AN-3.3 3.3 V
ADP1110AR-3.3 3.3 V
ADP1110AN-5 5 V
ADP1110AR-5 5 V
ADP1110AN-12 12 V
ADP1110AR-12 12 V

Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет - представляю вашему вниманию еще одну схему:



В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта для питания светодиодов.
Схему можно улучшить, приняв во внимание, что для работы светодиодам нужен источник тока, а не напряжения. Изменения в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.




резистор R1 служит для измерения тока. Преобразователь так устроен, что когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 = 0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и автоматически выбрать необходимое напряжение. К сожалению, на этом сопротивлении будет падать напряжение, что приведет к снижению КПД, однако, практика показала, что оно меньше чем превышение, которое мы выбрали в первом случаи. Я измерял выходное напряжение, и оно составило 3.4 - 3.6В. Параметры диодов в таком включении также должны быть по возможности одинаковыми, иначе суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим разную светимость.

Детали

1. Дроссель подойдет любой от 20 до 100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47 мкГн. Его можно сделать самому - намотать около 40 витков провода ПЭВ-0.25 на кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и 2,2 ком.
5. Светодиоды. L-53PWC - 4 штуки.



Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.


Ток, потребляемый от батареи напряжением 2,41V, - 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.

Первичную и вторичную обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит - 2x41 витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит - 2x44 витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют в соответствии со схемой.

Транзисторы КТ529А структуры p-n-p можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе, используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы скрепляют между собой хомутом из тонкой латуни, который обеспечивает необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают взамен лампы накаливания так, чтобы он выступал на 0,5... 1 мм из гнезда для её установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от батареи подают через резистор сопротивлением 18...24 Ом чтобы не вывести из строя транзисторы при неправильном подключении выводов трансформатора Т1. Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют исправность всех элементов и правильность монтажа.


Преобразователь напряжения для питания светодиодного фонаря промышленного образца.




Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 - микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки - практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ

Катушка индуктивности 68 микрогенри на 0.4 А

Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали - с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.

Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.


Фонарик на источнике тока


Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.



Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, и с улучшенным КПД

Т.к. выход операционника имеет тип «открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2, таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т.к. биполярный транзистор имеет сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая 0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми, в которых сопротивление сток исток гораздо меньше, это даст возможность уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.

Дроссель. Дроссель нужно брать с минимальным сопротивлением, особое внимание следует уделить максимальному допустимому току он должен быть порядка 400 -1000 мА.
Номинал не играет такой роли как максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и 180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем. Однако на практике это не совсем так, т.к. мы имеем не идеальную катушку, она имеет активное сопротивление и не линейна, кроме того, ключевой транзистор при низких напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек разного типа, конструкции и разного номинала, что бы выбрать катушку, при которой самый высокий КПД, и самое маленькое минимальное входное напряжение, т.е. катушку, с которой фонарик будет светиться максимально долго.

Конденсаторы.
C1 может быть любым. С2 лучше взять танталовым т.к. у него маленькое сопротивление это повышает КПД.

Диод Шотки.
Любой на ток до 1А, желательно с минимальным сопротивлением и минимальным падением напряжения.

Транзисторы.
Любые с током коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318 подойдет.

Светодиоды.
Можно белые NSPW500BS со свечением в 8000мКд от Power Light Systems .

Преобразователь напряжения
ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить, взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.


Фонарь на ADP3000-ADJ

Параметры:
Питание 2.8 - 10 В, КПД ок. 75%, два режима яркости - полный и половина.
Ток через диоды 27 мА, в режиме половинной яркости - 13 мА.
В схеме для получения высокого КПД желательно использовать чип-компоненты.
Правильно собранная схема в настройке не нуждается.
Недостатком схемы является высокое (1,25V) напряжение на входе FB (вывод 8).
В настоящее время выпускаются DC/DC конвертеры с напряжением FB около 0,3V, в частности, фирмы Maxim, на которых реально достичь КПД выше 85%.


Схема фонаря на Кр1446ПН1.




Резисторы R1 и R2 - датчик тока. Операционный усилитель U2B - усиливает напряжение, снимаемое с датчика тока. Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать другие значения тока стабилизации.
В принципе операционный усилитель можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6 Вольта - 36 мВт. В случае применения операционного усилителя потери составят:
на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт + потребление самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
= 1.88 мВт - существенно меньше, чем 36 мВт.

О компонентах.

На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше - типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.

КПД получившегося устройства.
Входные U I P Выходные U I P КПД
Вольт мА мВт Вольт мА мВт %
3.03 90 273 3.53 62 219 80
1.78 180 320 3.53 62 219 68
1.28 290 371 3.53 62 219 59

Замена лампочки фонарика “Жучёк” на модуль фирмы Luxeon Lumiled LXHL - NW 98.
Получаем ослепительно яркий фонарик, с очень легким жимом (по сравнению с лампочкой).


Схема переделки и параметры модуля.

Преобразователи StepUP DC-DC конверторы ADP1110 фирма Analog devices.




Питание: 1 или 2 батарейки 1,5в работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 = 300mA
*при замкнутом переключателе S1 = 110mA


Светодиодный электронный фонарь
С питанием всего от одной пальчи­ковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практиче­ски идентичные характеристики.


За основу взят фо­нарь, в котором в качестве источника питания используются две паль­чиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго эле­мента питания. С одного торца платы припаян контакт из луженой же­сти для питания схемы, а с другого - светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть боль­ше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставля­ется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубоч­ки из ПВХ или фторопласта. Назначение кружка - двойное. Он обе­спечивает конструкции необходимую жесткость и одновременно слу­жит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают та­ким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.

В конструкции применены, стандарт­ные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет пи­тать даже светодиоды с яркостью до 25 кд!

О некоторых результатах испытаний данной конструкции.
Доработанный таким образом фонарь проработал со «свежей» ба­тарейкой без перерыва, во включенном состоянии, более 20 часов! Для сравнения - тот же фонарь в «стандартной» комплектации (то есть с лампой и двумя «свежими» батарейками из той же партии) рабо­тал всего 4 часа.
И еще один важный момент. Если применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за состоянием уров­ня их разрядки. Дело в том, что преобразователь на микросхеме КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение светодиодов стабильно яркое, пока напряжение на аккуму­ляторе не достигло этого критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света.

Рис. 9.2 Рис 9.3




Печатная плата устройства приведена на рис. 9.3, а расположение элементов - на рис. 9.4.


Включение и выключение фонаря одной кнопкой


Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме "выкл." ток потребления схемы - практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция- устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т.к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.

CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2

Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет "выжать" из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм - 100-300 витков с отводом от середины, намотанные на тороидальное колечко.




Светодиодный фонарь с регулируемой яркостью и режимом "Маяк"

Питание микросхемы - генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая управляет электронным ключом, в предлагаемом устройстве осуществляется от повышающего преобразователя напряжения, что позволяет питать фонарь от одного гальванического элемента 1,5.
Преобразователь выполнен на транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной обратной связью по току.
Схема генератора с регулируемой скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght белого свечения равен 2.3 мА Зависимость потребляемого тока от числа светодиодов - прямо пропорциональная.
Режим "Маяк", когда светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при установке регулятора яркости на максимум и повторном включении фонаря. Желаемую частоту световых вспышек регулируют подбором конденсатора СЗ.
Работоспособность фонаря сохраняется при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет следующие предельные параметры, напряжение сток-исток - 240 В; напряжение затвор-исток - 20 В. ток стока - 0.18 А; мощность - 0.5 Вт
Допустимо параллельное включение транзисторов желательно из одной партии. Возможная замена - КП504 с любым буквенным индексом. Для полевых транзисторов IRF540 напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть повышено до 10 В
В фонаре с шестью параллельно включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при подключении параллельно VT3 второго транзистора - 140 мА
Трансформатор Т1 намотан на ферритовом кольце 2000НМ К10- 6"4.5. Обмотки намотаны в два провода, причем конец первой обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10 витков, вторичная - 2*20 витков Диаметр провода - 0.37 мм. марка - ПЭВ-2. Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один слой, число витков - 38. Индуктивность дросселя 860 мкГн












Схема преобразователя для светодиода от 0,4 до 3V - работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.






Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).

Building the LED Head Lamp





Что касается трансформатора в конвертере DC-DC. Вы должны его сделать самостоятельно. Изображение показывает, как собрать трансформатор.



Ещё вариант преобразователей для светодиодов _http://belza.cz/ledlight/ledm.htm








Фонарь на свинцово-кислотном герметичном аккумуляторе с зарядным устройством .

Свинцово кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в них находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь их полной разрядки.
Свинцово-кислотные герметичные аккумуляторные батареи подходят для применения в переносных фонарях, используемых в домашнем хозяйстве, на дачных участках, на производстве.


Рис.1. Схема электрического фонаря

Электрическая принципиальная схема фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая простым способом не допустить глубокий разряд аккумулятора и, таким образом, увеличить его срок службы, показана на рисунке. Он содержит заводской или самодельный трансформаторный блок питания и зарядно-коммутационное устройство, смонтированное в корпусе фонаря.
В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А. Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для этой цели.
Переменное напряжение с трансформаторного блока поступает на зарядно-коммутационное устройство, содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1, стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку экстренного включения S2, лампу накаливания HL2. Каждый раз при включении тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1 замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается, пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения реле К1. Изменять допустимое значение напряжения разряда можно с помощью резистора R2. С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не включится, следовательно, не будет подано напряжение на базу транзистора VТ1, включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае экстренной необходимости можно включить фонарь при пониженном напряжении кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного устройства можно подавать и постоянное напряжение, не обращая внимание на полярность стыкуемых устройств.
Для перевода фонаря в режим заряда необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2, расположенной на корпусе фонаря, а затем включить вилку (на рисунке не показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А. Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в стабилизаторе тока, выполняет также функцию индикатора режима заряда аккумулятора.
Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах) обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в ампер-часах).
Для настройки лучше всего собрать схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А. Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64, паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с любым буквенным индексом. Эти транзисторы являются составными и имеют высокий коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1 установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор R1 состоит из двух последовательно соединенных проволочных резисторов мощностью 12 Вт.

Схемы:



РЕМОНТ СВЕТОДИОДНОГО ФОНАРИКА

Номиналы деталей (С, D, R)
C = 1 мкФ. R1 = 470 кОм. R2 = 22 кОм.
1Д, 2Д - КД105А (допустимое напряжение 400V предельный ток 300 mA.)
Обеспечивает:
зарядный ток = 65 - 70mA.
напряжение = 3,6V.











LED-Treiber PR4401 SOT23






Здесь можно посмотреть к чему привёли результаты эксперимента.

Предложенная Вашему вниманию схема, была использована для питания светодиодного фонарика, подзарядки мобильного телефона от двух металлгидритных аккумуляторов, при создании микроконтроллерного устройства, радиомикрофона. В каждом случае работа схемы была безупречной. Список, где можно использовать MAX1674 можно ещё долго продолжать.


Самый простой способ получить более-менее стабильный ток через светодиод - включить его в цепь нестабилизированного питания через резистор. Надо учитывать, что питающее напряжение должно быть как минимум в два раза больше рабочего напряжения светодиода. Ток через светодиод рассчитывается по формуле:
I led = (Uмакс.пит - U раб. диода) : R1

Эта схема чрезвычайно проста и во многих случаях является оправданной, но применять ее следует там, где нет нужды экономить электричество, и нет высоких требований к надежности.
Более стабильные схемы, - на основе линейных стабилизаторов:


В качестве стабилизаторов лучше выбирать регулируемые, или на фиксированное напряжение, но оно должно быть как можно ближе к напряжению на светодиоде или цепочке последовательно соединенных светодиодов.
Очень хорошо подходят стабилизаторы типа LM 317.
ный немецкий текст: iel war es, mit nur einer NiCd-Zelle (AAA, 250mAh) eine der neuen ultrahellen LEDs mit 5600mCd zu betreiben. Diese LEDs benötigen 3,6V/20mA. Ich habe Ihre Schaltung zunächst unverändert übernommen, als Induktivität hatte ich allerdings nur eine mit 1,4mH zur Hand. Die Schaltung lief auf Anhieb! Allerdings ließ die Leuchtstärke doch noch zu wünschen übrig. Mehr zufällig stellte ich fest, dass die LED extrem heller wurde, wenn ich ein Spannungsmessgerät parallel zur LED schaltete!??? Tatsächlich waren es nur die Messschnüre, bzw. deren Kapazität, die den Effekt bewirkten. Mit einem Oszilloskop konnte ich dann feststellen, dass in dem Moment die Frequenz stark anstieg. Hm, also habe ich den 100nF-Kondensator gegen einen 4,7nF Typ ausgetauscht und schon war die Helligkeit wie gewünscht. Anschließend habe ich dann nur noch durch Ausprobieren die beste Spule aus meiner Sammlung gesucht... Das beste Ergebnis hatte ich mit einem alten Sperrkreis für den 19KHz Pilotton (UKW), aus dem ich die Kreiskapazität entfernt habe. Und hier ist sie nun, die Mini-Taschenlampe:

Источники:
http://pro-radio.ru/
http://radiokot.ru/

В своей статье я расскажу вам, как сделать безумно яркий аккумуляторный светодиодный фонарь, и превратить ночь в день своими руками.




Показать еще 4 изображения





Большинство из нас пользуется фонарями в походах, для ночных прогулок или просто, когда выходит в темноту. Обычно эти фонари мы покупаем в хозяйственных магазинах, и они светят достаточно тускло. Чтобы исправить это, я придумал и собрал сверхмощный фонарь, который подходит для освещения дороги ночью, создания крутых фото и видео эффектов (вроде светящихся сфер в научной фантастике), освещения рабочей площадки и много другого и все это за разумную стоимость.

Шаг 1: Используемые материалы





Показать еще 7 изображений








Даю список использованных мной материалов, можно взять такие же или подобрать что-то похожее.

  • Выключатели
  • Литий-полимерные аккумуляторы 11,1В (возьмите те, которые подойдут больше вашему фонарю), даю вам ссылки на подходящие модели:

Также вам понадобятся провода, клеммная колодка, предохранители и держатели для них, припой, термоусадка и тд.

Получившийся дальнобойный фонарь выйдет примерно втрое дешевле, чем магазинные аналоги. И не забывайте, что аккумулятор и зарядное устройство можно использовать в других приборах. Также во время сборки ручного фонаря вы приобретете новые знания и опыт, а это бесценно.

Шаг 2: Основные рабочие моменты сборки фонаря



Так как диод в нашем прожекторе потребляет огромное количество энергии, вплоть до 100 Вт (33 В и 3 А), он отдает очень много тепла, поэтому ему нужен серьезный теплоотвод. Тот, что я указал в своем списке может показаться вам чересчур большим, и так оно и есть, но и наш фонарь сам по себе «чересчур».

Чтобы обеспечить энергией этого «зверя» вам понадобится мощный аккумулятор, для приборов с высоким энергопотреблением, также он должен быть легким и компактным, ведь мы с вами как-никак переносной фонарь делаем, — свинцово-кислотные сразу отпадают. Этим требованиям отвечают литий-полимерные аккумуляторы. Такие обычно устанавливают на дронов и РУ-модели. Они небольшие, легкие и их можно быстро разрядить – то, что надо для нашего фонаря. Я установил в свой фонарь 11,1В аккумулятор (ссылка выше).

Так как мощность аккумулятора 11,1В, а диоду нужно 33В, мы и взяли повышающий преобразователь. Он использует встроенный потенциометр, чтобы повышать входное напряжение 11,1В до 33В на выходе. Вы должны следить, чтобы диод не получал больше 34В, и не меньше 26В. Для того, чтобы отслеживать выходное напряжение преобразователя вам и нужен будет цифровой вольт-амперметр. Он показывает вам напряжение и силу тока, идущего к диоду. Все это позволяет нам регулировать яркость света и помогает предотвратить подачу тока слишком высокого напряжения. Для дополнительной защиты мы установим 4А плавкие предохранители на выходе преобразователя. Как бы забавно ни было взорвать 100Вт диод, ждать доставки снова не хочется.

Индикатор разряда необходим для предотвращения глубокого разряда, ввиду чувствительной внутренней химии литий-полимерных аккумуляторов такой индикатор необходим. Каждый элемент аккумулятора будет заряжаться при напряжении до 4,2В на каждый элемент, и не ниже 3В. Если напряжение опустится ниже 3В, оно быстро упадет до 1В, это повредит элемент. Мы предупредим это, установив индикатор разряда на 3,2В (раздастся звуковой сигнал) с помощью кнопки наверху. Но если по какой-то неизвестной причине напряжение упадет ниже 3,2В, быстро поставьте аккумулятор на зарядку на наименьший уровень заряда, это позволит восстановить аккумуляторный элемент с минимальными повреждениями.

В своем фонаре я установил два выключателя – один, главный, на общее питание, второй – только на диод. Я сделал это для того, чтобы при выключенном свете система охлаждения, индикатор разряда и цифровой вольтамперметр продолжали работать. Так я могу видеть напряжение в аккумуляторе с включенным или выключенным светом, кроме того, мне нравится слушать, как мой прибор шумит при включении главного выключателя.

Шаг 3: Монтируем диод к теплоотводу


Чтобы начать монтаж, нанесите на диод термопасту, как показано на картинке сверху (так как применение термопасты имеет много противоречивых отзывов, вы можете этого не делать). После этого я прикрутил винтами алюминиевый теплоотвод, лежавший у меня без дела, к диоду, и закрепил их на большом теплоотводе, как на другой картинке выше.

Не закручивайте гайки слишком сильно, чтобы не погнуть диод.

Вы можете приклеить линзу с рефлектором на этом этапе, используя эпоксидную смолу.

Шаг 4: Корпус





Показать еще 3 изображения


Корпус я взял от старого сломанного фонаря. Сначала я достал его содержимое – две лампочки от автомобильных фар и две небольшие свинцовокислые батареи. Потом я немного модифицировал корпус, чтобы уместить в нем новое содержимое. Для этого мне понадобились: термоклей, эпоксидная смола, наждачная бумага и гравер.

Сначала я удалил некоторые суппорты с помощью гравера. Потом я произвел предварительную сборку всех деталей и присоединил провода к рефлектору, лишнюю длину проводов я отрезал позже. В таких случаях всегда помогает эпоксидная смола. Теперь нужно попробовать, как собранные детали помещаются в корпусе, у меня все уместилось отлично. Затем я прорезал вентиляционные отверстия для кулера и закрыл их куском решетки от динамика старого сломанного айпода. Еще я прорезал и зашкурил отверстия под цифровой вольтамперметр, индикатор разряда, главный выключатель и подстроечный потенциометр, и установил их и повышающий преобразователь, использовав для этого очень много термоклея, потому что внутри корпуса его не видно.

Потом я добавил несколько завершающих штрихов – застежки-липучки на аккумуляторе и на ручке фонаря, чтобы его удобно было крепить к чему-нибудь, и приклеил наклейки, которые пришли в комплекте с аккумулятором. Теперь пора заняться проводами.

Я думаю, не у всех будет такая роскошь, как уже готовый корпус для фонаря, и мне очень интересно, как вы решите эту проблему.

Шаг 5: Электропроводка







Я набросал примитивную схему электропроводки в фонаре. Когда вы будете монтировать проводку фонаря, оставляйте провода достаточно длинными, чтобы их хватило на размер корпуса. Я соединил большую часть проводов до того, как поместил все в корпус, но можно сначала разместить компоненты и после этого протягивать провода, это зависит от корпуса вашего фонаря.

На этом этапе вам понадобится клеммная колодка для соединений с землей и питанием, провода (12 или 14 американский калибр, для соединений с большой мощностью), 4А плавкий предохранитель и держатель для него, и другие мелочи.

Не забудьте все соединения прятать в термоусадку. Сначала припаяйте провод к гнезду коннектора XT60, последовательно соедините выключатель с заземляющим проводом, этот выключатель будет главным. Затем закрепите концы в клеммной колодке, создавая положительную и заземляющую линии (в зависимости от используемой вами клеммной колодки, возможно вам придется вести провода от каждого соединения к клеммам).

Повышающий преобразователь

Припаяйте провода питания и заземления к входам.
Выключатель соедините с держателем предохранителя и подключите к отрицательному выходу. Здесь мы подключим 4А предохранитель.

Для регулировки напряжения, идущего на диод, вам нужен будет доступ к потенциометру. Я для этого вывел уже имеющийся в преобразователе подстроечный потенциометр в доступ.

Цифровой вольтамперметр и диод

Соедините два тонких провода (красный с плюсом, черный с землей), чтобы запитать клеммную колодку. Черный провод большего диаметра соедините с отрицательным выходом повышающего преобразователя, после держателя предохранителя.
Желтый провод пойдет к отрицательному выходу диода. Красный провод большего диаметра пойдет к положительному выходу повышающего преобразователя.

Индикатор разряда

Чтобы подключить индикатор разряда, соедините балансировочный разъем с выводами от земли до третьего, перекусите заземленный провод и соедините с основным разъемом земли на клеммной колодке.

Шаг 6: Чего делать не надо




А вот список вещей, которых делать НЕ надо.

Ночью не справиться без фонарика — главного электрического прибора, предназначенного для видения. Без данного предмета человеку увидеть что-либо в темноте вообще не представляется возможным. Причина этого кроется в том, что человек в темноте не способен отличать между собой цвета.

С каждым годом в интернете появляется все больше фото самодельных фонариков, что вполне логично, поскольку, благодаря такому придуманному прибору можно увидеть в темноте абсолютно все.

Сегодня существует несколько разновидностей фонариков. Можно найти не только классические варианты, известные всем, но также и фонари, предусматривающие самостоятельное регулирование в случае необходимости пучка света. В данной статье рассмотрим подробно как сделать фонарик своими руками, используя лишь приготовленные материалы и пошаговую инструкцию.

Фонарики из бумаги

Если смотреть различные схемы и инструкции как сделать фонарик самостоятельно, то легко заметить, что сделать его из бумаги проще, чем из любого другого материала. Более того, сделать красивый фонарик из цветной бумаги под силу даже ребёнку под присмотром взрослого.

В интернете можно увидеть бесчисленное множество образцов и глядя на них можно выполнить их достаточно быстро. Если хочется сделать красивый фонарик, то дополнительно можно украсить его таким аксессуаром, как бумажная лента.


Бумажный фонарик выступает достаточно милым символом, поэтому даже если некоторые самодельные помощники в освещении совершенно не светят, им прощается их не функциональность.

К тому же, они настолько красивые, что делать их очень интересно не только детям, но и взрослым. Сегодня простые и мощные фонарики своими руками созданные становятся предметом, который делают даже с малышами в детском саду.

Как украсить фонарик?

Классический бумажный фонарик можно интересно преобразить, например, при помощи различного декора. Особенно успешно это демонстрирует компания икеа. Ежегодно в их журналах появляется все больше различных вариантов использования гирлянд из фонариков на стенах и потолке. Благодаря такому интересному предмету интерьера можно быстро и бюджетно преобразить внешний вид любой комнаты.

Итак, что нужно для изготовления фонарика дома? Бумага, ножницы, клей и немного декора. В остальном настоящий простор для деятельности, который ничем не ограничен.

Больше дырок в фонариках

Сегодня в различных журналах можно найти множество различных фонариков из бумаги, которые под силу сделать с ребёнком любого возраста. Можно, например, попробовать сделать яркий горшочек с дырочками, который станет украшением даже классической модели фонарика. Что самое главное — это определенно заменит общее развивающее занятие с ребёнком старше трёх лет.

Фонарик-дом

Если вы хотите попробовать сделать популярные сегодня ультрафиолетовые и светодиодные фонарики, то можно попробовать для них выбрать форму домика. Красивые фонари в виде домов или даже дворцов сделать достаточно просто. В интернете можно найти шаблон практически на любой вкус. Если вы хотите провести больше времени с ребёнком, то можно попробовать даже нарисовать шаблон для будущей поделки самостоятельно.

Главное, что необходимо учесть при создании такого типа фонарика — это обязательное создание пазов. В таком случае вы даже скорее всего не испачкаетесь в клее.

Кроме того, вещь станет по-настоящему уникальной и нигде больше такую никто не встретит. Сделать такой фонарик можно буквально за пару часов. Основное отличие при создании будет заключаться лишь в используемом материале. В остальном же они делаются также, как и фонари в виде домиков из картона.

При создании таких фонарей имейте в виду, что аксессуар ни за что не сможет стать полноценным источником освещения. При этом фонарь можно использовать в качестве ночника в детской комнате или дополнительного источника освещения, например, на кухне, при условии, что основное освещение будет достаточно ярким.

Фото фонарик своими руками

Обратите внимание!

Обратите внимание!

Обратите внимание!