Магнитная жидкость, а точней, ферромагнитная жидкость – это жидкость, сильно поляризующаяся в присутствии магнитного поля. Название свое она получила от латинского слова ferrum, то есть «железо».

Магнитная жидкость представляет собой не что иное, как высокодисперсную суспензию. Другими словами, это коллоидная система, которая состоит из несущей жидкости и ферромагнитных наноразмерных частиц, находящихся в ней во взвешенном состоянии. Несущей жидкостью могут являться вода, органический растворитель, углеводороды, кремний- или фторорганические вещества.

Название, однако, этих веществ не совсем соответствует действительности, так как сами по себе подобные жидкости не проявляют ферромагнитных свойств. После прекращения воздействия на них магнитным полем они не сохраняют остаточной намагниченности. Ферромагнитные жидкости на самом деле являются лишь парамагнетиками или, как их еще называют, «суперпарамагнетиками» - они просто очень восприимчивы к магнитному полю.

История ферромагнитных жидкостей

Ферромагнитные жидкости и подобные им вещества появились достаточно давно. Практически одновременно они были созданы в 60-х годах прошлого столетия в США и СССР. В те годы их широко применяли в различных космических программах.
Другим кругам научной общественности эти субстанции доступны не так давно. Сегодня магнитные жидкости изучаются во многих странах, обладающих высоким научным потенциалом: Японией, Францией, Германией и Великобританией.

Применение ферромагнитных жидкостей

Основным и самым неповторимым свойством всех ферромагнитных жидкостей является сочетание в них высокой текучести с исключительными магнитными свойствами. По этим двум показателям ферромагнитные субстанции в десятки тысяч раз превосходят любую из известных жидкостей. Именно благодаря этим свойствам магнитные суспензии нашли широкое применение в самых различных областях.

Например, их используют в электронных устройствах, создавая при их помощи прослойку, надежно защищающую детали от проникновения посторонних частиц. А во многих высокочастотных динамиках ферромагнитные жидкости используются для отвода тепла от звуковой катушки.

В машиностроении подобные суспензии применяют для снижения трения между отдельными деталями узла.

Магнитные жидкости используют и в аналитических приборах - благодаря их преломляющим свойствам они нашли свою нишу в оптике.

Также ведутся эксперименты по применению ферромагнитных жидкостей для удаления опухолей.

Веклич А.В,
Ерушевич Д.А,
Борисов Р.А,
Рачек В.Б.

Институт инженерной физики и радиоэлектроники СФУ
660074, Красноярск, ул. Киренского 26.
E-mail: [email protected]

В данной статье рассматриваются способ получения ферромагнитной жидкости, спектр ее применения на производстве.

Ключевые слова: Ферромагнитная жидкость, феррофаза.

This article discusses a method for producing a ferromagnetic fluid, the spectrum of its application in the workplace.

Keywords : Ferrofluid, ferrophase.

Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер 10 нм или меньше) магнетита, гематита или другого материала, содержащего железо, взвешенных в несущей жидкости. Они достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле. Аналогичным образом ионы в водных растворах парамагнитных солей (например, водный раствор сульфата меди(II) или хлорида марганца(II)) придают раствору парамагнитные свойства.

Ферромагнитные жидкости это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость, в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах.

Для обеспечения устойчивости ФЖ частицы связываются с поверхностно-активным веществом (ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипанию из-за Ван-дер-Ваальсовых или магнитных сил. Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле ферромагнитные жидкости являются парамагнетиками и их часто называют «супермагнетиками» из-за высокой магнитной восприимчивости. Ферриты-химические соединения оксида железа Fe 2 O 3 c оксидами других металлов.

Рассмотрим принцип получения ферромагнитной жидкости.

Выделим основные задачи:

1) получить высокодисперсные частицы феррофазы;

2) стабилизировать их в жидкости-носителе.

Оценки показывают, что для обеспечение устойчивости МЖ, необходимо обеспечить получение частиц ферромагнетика размером 500- 2000 нм. Достичь таких размеров можно или измельчая крупные частицы мaгнетика, или же выращивая их из молекулярных размеров до коллоидных. Второй очень важной технолoгической особенностью получения магнитных жидкостей, высоко дисперсных магнитных материалов является защита коллоидных частиц от окисления и предотвращения агломерации и коагуляции как в процессе получения, так и при переводе частиц в коллоидное состояние в жидкости-носителе. Наиболее успешно эта задача решается путем получения высокодисперсных частиц непосредственно в жидкости-носителе и стабилизации их ПАВ в момент или сразу после их образования. Условием эффективной стабилизации частиц является совместимость феррофазы, стабилизатора и дисперсионной среды, при этом наилучшими стабилизаторами оказываются такие вещества, которые хорошо адсорбируются на поверхности частиц феррофазы, а свободной частью своей молекулы хорошо растворяются в жидкости-носителе. Этим условиям обычно хорошо отвечают вещества с длинной углеводородной цепочкой (C10-C20) содержащие функциональные группы (-OH, -NH 2 , -COOH, SO 3 H и т.д.). Способы получения коллоидных систем МЖ можно разделить на методы диспергирования и методы конденсации.

Для получения МЖ в химической лаборатории использовался метод конденсации высокодисперсного магнетита, в основе которого лежит реакция солей железа (II) и (III) в щелочной среде: FeSO 4 *7H 2 O + 2FeCl 3 *6H 2 O + 8NH 3 *H 2 O → Fe 3 O 4 + 6NH 4 Cl + (NH) 2 SO 4 + 20H 2 O

Реактивы: FeSO 4 *7H 2 O; FeCl 3 *6H 2 O; 25%-ный раствор аммиака, дистиллированная вода, мыло.

Предложенные для проведения эксперимента массы веществ были уменьшены в четыре раза.

1. В дистиллированной воде растворить FeSO 4 *7H 2 O и FeCl 3 *6H 2 O (при слабом подогреве и несильном помешивании).

2. Полученный раствор отфильтровать в другую колбу для отделения от механических примесей.

3. Залить в чистую колбу 25%-ный раствор аммиака.

4. Тонкой струей влить отфильтрованный раствор в колбу с «аммиачной водой» при интенсивном помешивании. Коричнево-оранжевый раствор мгновенно превращается в суспензию черного цвета.

5. Долить к получившемуся раствору немного воды и поставить колбу с образовавшейся смесью на магнит на 30 мин.

6. После выпадения частиц магнетита на дно колбы (под действием сил магнитного поля), крайне осторожно слить около 2/3 раствора, придерживая осадок магнитом. Снова залить дистиллированную воду в колбу, в таком же количестве, и хорошо перемешивая раствор. Поставить колбу на магнит. Повторять эти действия до тех пор, пока pH сливного раствора не станет нейтрален.

7. Получившуюся суспензию отфильтровать и собрать осадок.

8. Осадок смешать с заранее полученным ПАВ.

9. Нагревать полученную смесь в течение часа (t=80˚C), хорошо перемешивая.

10. Охладить полученную смесь до комнатной температуры. Добавить дистиллированной воды и тщательно размешать.

Разведенную в воде смесь поставить на магнит на несколько часов, после чего ферромагнитная жидкость готова.

Магнитные жидкости (MЖ) - это уникальный технологический искусственно синтезированный материал, обладающий жидкотекyчими магнитoуправляемыми свойствами с широкими перспективам применения в технике, медицине, экологии. MЖ обладает всеми преимуществами жидкого материала - малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость МЖ позволяет удерживать ее в нужном месте устройства под действием магнитного поля. Сейчас для магнитных жидкостей придумали множество полезных применений: для уплотнения валов и поршней, для «вечной» смазки, для сбора нефти, разлитой на воде, для обогащения полезных ископаемых, для лечения и диагностики многих болезней и даже для прямого превращения тепловой энергии в механическую. Рассмотрено некоторые наиболее интересные и перспективные области применения магнитной жидкости.

Сформируем вывод о проделанной работе.

Магнитные жидкости, обладают, огромным потенциалом и несут в себе, если не технологическую революцию, то множество важных фундаментальных открытий и перспективных технологических применений.

Список литературы

  1. Арефьев И.М. «Применение магнитных жидкостей. Магнитная смазка». Москва: Наука, 2000г.
  2. Берлин М.А., Грабовский Ю.П., Соколенко В.Ф., Пиндюрина Н.Г. Некоторые вопросы технологии получения ферромагнитных жидкостей, Иваново, 1981г.
  3. Контарев А.В., Стадник С.В., Лешунков В.А. «Применение магнитных жидкостей. Успехи современной науки», 2006г.
  4. Северцев Л.Г. Статья «Магнитные жидкости - яд для рака!» Журнал «Молекулярная медицина» № 3, 2003г.
  5. Сенатская И.И., Байбуртский Ф.С. «Жидкость, которая твердеет в магнитном поле» Химия и жизнь, 2002г.

Ферромагнитная жиидкость (ФМЖ, магнитная жидкость, феррожидкость, феррофлюид) (от латинского ferrum - железо) - жидкость, сильно поляризующаяся в присутствии магнитного поля.

Ферромагнитная жидкость


Ферромагнитные жидкости представляют собой коллоидные системы, состоящие из ферромагнитных или ферримагнитных частиц нанометровых размеров, находящихся во взвешенном состоянии в несущей жидкости, в качестве которой обычно выступает органический растворитель или вода. Для обеспечения устойчивости такой жидкости ферромагнитные частицы связываются с поверхностно-активным веществом (ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипанию из-за Ван-дер-Ваальсовых или магнитных сил.


Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле ферромагнитные жидкости являются парамагнетиками и их часто называют «суперпарамагнетиками» из-за высокой магнитной восприимчивости. Действительно ферромагнитные жидкости в настоящее время создать сложно.


Ферромагнитные жидкости это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость, в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах.


Под воздействием довольно сильного вертикально направленного магнитного поля поверхность жидкости с парамагнитными свойствами самопроизвольно формирует регулярную структуру из складок. Этот эффект известен как «нестабильность в нормально направленном поле». Формирование складок увеличивает свободную энергию поверхности и гравитационную энергию жидкости, но уменьшает энергию магнитного поля. Такая конфигурация возникает только при превышении критического значения магнитного поля, когда уменьшение его энергии превосходит вклад от увеличения свободной энергии поверхности и гравитационной энергии жидкости. У ферромагнитных жидкостей очень высокая магнитная восприимчивость, и для критического магнитного поля, чтобы возникли складки на поверхности, может быть достаточно маленького стержневого магнита.

Ферромагнитные жидкости используются для создания жидких уплотнительных устройств вокруг вращающихся осей в жёстких дисках. Вращающаяся ось окружена магнитом, в зазор между магнитом и осью помещено небольшое количество ферромагнитной жидкости, которая удерживается притяжением магнита. Жидкость образует барьер, препятствующий попаданию частиц извне внутрь жёсткого диска. Согласно утверждениям инженеров (Ferrotec Corporation), жидкие уплотнители на вращающихся осях в норме выдерживают давление в от 3 до 4 фунтов на квадратный дюйм (примерно от 20 до 30 кПа), но такие уплотнители не очень годятся для узлов с поступательным движением (например, поршней), так как жидкость механически вытягивается из зазора.
также используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим демпфером, подавляя нежелательный резонанс. удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой.
способна снижать трение. Нанесенная на поверхность достаточно сильного магнита, например неодимового, она позволяет магниту скользить по гладкой поверхности с минимальным сопротивлением.
Ferrari использует магнитореологические жидкости в некоторых моделях машин для улучшения возможностей подвески. Под воздействием электромагнита, контролируемого компьютером, подвеска может мгновенно стать более жесткой или более мягкой.
Замороженная или полимеризованная ферромагнитная жидкость, находящаяся в совокупности постоянного (подмагничивающего) и переменного магнитных полей, может служить источником упругих колебаний с частотой переменного поля, что может быть использовано для генерации ультразвука.

1

Белоногова С.А. (Калининград, МАОУ СОШ № 19)

1. Викторова Л. Как сделать ферромагнитную жидкость дома? // НиЖ. – 2015. – №12. – https://www.hij.ru/read/issues/2015/december/5750/.

2. Сенатская И., Байбуртский Ф. Магнитная жидкость // Наука и жизнь. – https://www.nkj.ru/archive/articles/4971/.

3. Ферромагнитная жидкость. – https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F_%D0%B6%D0%B8%D0%B4%D0%BA%D0%BE%D1%81%D1%82%D1%8C.

4. Феррожидкость – что это и как сделать ферромагнитную жидкость самому. – http://www.sciencedebate2008.com/ferrofluid/.

Цель: приготовить ферромагнитную жидкость и изучить её свойства.

Задачи :

1. Узнать о ферромагнитной жидкости (вид неньютоновской жидкости).

2. Приготовить ферромагнитную жидкость.

3. Провести эксперименты для изучения её свойств.

4. Узнать её применение.

5. Сделать выводы.

6. Представить результаты.

Гипотеза: в домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Область применения результатов: участие в научно-исследовательских конкурсах

Актуальность: Магнетизм - это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Планета Земля имеет два магнитных полюса и собственное магнитное поле. Магниты - важная часть нашей повседневной жизни. Магниты являются существенными компонентами таких устройств, как электрические двигатели, динамики, компьютеры, проигрыватели компакт-дисков, микроволновые печи и, конечно, автомобили. Магниты используются в датчиках, приборах, производственном оборудовании, научных исследованиях. Ферромагнитная жидкость - один из видов неньютоновской жидкости. Это искусственно созданная жидкость. Эта жидкость меняет свойства при определенных условиях которыми может управлять человек.

1. Теоретическая часть

Магнитные жидкости - это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами.

В 1963 году сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение - добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

Минимальный состав ферромагнитой жидкости: ферромагнетик (например, мелкие частицы магнитного металла) и растворитель (например, различные масла). Но такая жидкость будет оседать. Чтобы этого не происходило, необходимо добавить модификатор поверхности (вещество, которое не даёт ферромагнетику слипаться, например лимонная кислота). Ферромагнитные жидкости изучает раздел науки коллоидная химия.

Магнитная жидкость обладает всеми преимуществами жидкого материала - малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

2. Практическая часть

В практической части работы я пробовал сделать ферромагнитную жидкость и посмотреть как она изменяется в присутствии магнита.

2.1. Материалы и инструменты

Тонер-порошок, девелопер, железная стружка, магнитный порошок;

Машинное масло, подсолнечное масло;

Лимонная кислота;

Неодимовые магниты: из обычного жесткого диска для компьютера, из звукового динамика, приобретенный в специализированном магазине неодимовое магнит-кольцо;

Флакон, воронка, разные поверхности, полиэтиленовый пакет, перчатки, палочка;

Блокнот для записей, ручка, фотоаппарат, ноутбук.

2.2. Опыт № 1. Получение ферромагнитной жидкости из тонер-порошка и машинного масла

В глобальной сети Интернет есть множество сайтов, на которых описан способ получения ферромагнитной жидкости из тонер-порошка и машинного масла в пропорции одна третья тонер порошка, остальное машинное масло. Я взял тонер-порошок для лазерных принтеров brother и машинное масло. Смешал в пластиковой бутылке. После смешивания, я поднес магнит и ничего не произошло. Жидкость получилась, но она не обладала магнитными свойствами. Если бы жидкость обладала магнитными свойствами, она бы затвердела и изменила свою форму при движении магнита. Опыт завершился неудачей.

2.3. Опыт № 2. Получение ферромагнитной жидкости из тонер-порошка, девелопера и машинного масла

Из первого опыта я сделал вывод о том, что используемый тонер не является ферромагнетиком. В современных лазерных принтерах для намагничивания краски используется девелопер - специальный магнитный порошок. В получившуюся в первом опыте жидкость я добавил треть объема девелопера. Когда я поднес магнит, жидкость образовала почти незаметный холмик и не затвердела. Получилась жидкость со слабыми ферромагнитными свойствами. Опыт завершился неудачей.

2.4 Опыт № 3. Получение ферромагнитной жидкости из железной стружки и машинного масла

После первых двух неудавшихся опытов, я задумался о силе магнита. С помощью которого проверяю наличие магнитных свойств. Для проверки жидкости я использовал два магнита: магнит от звукового динамика и неодимовый магнит из уже не работающего жесткого диска для компьютера (HDD). Для того чтобы убедится, что ферромагнитная жидкость не получается из-за свойств ферромагнетика в жидкости, а не магнита я добавил в получившийся раствор обычные железные опилки (отходы от работы на слесарном станке). Магнит притянул к стенке все железные элементы жидкости! Магнитные свойства появились, но все то что я смешал уже сложно назвать жидкостью. Опыт снова завершился неудачей.

2.5. Опыт № 4. Получение ферромагнитной жидкости из магнитного порошка и подсолнечного масла

Итак, для получения ферромагнитной жидкости нужен хороший ферромагнетик! В специализированном магазине "Мир магнитов" я приобрел специальный железный магнитный порошок для опытов.

2.6. Опыт № 5. Получение ферромагнитной жидкости из магнитного порошка, лимонной кислоты и подсолнечного масла

Для того чтобы ферромагнитная жидкость не расслаивалась в нее добавляют ПАВ (поверхностно активное вещество). В качестве ПАВ я выбрал лимонную кислоту.

2.7. Опыт № 6. Изучение свойств феррмагнитной жидкости. Магнитоуправляемость

Для изучения свойств полученной жидкости я использовал неодимовый магнит.

Магниты и инструментарий

Когда я поднес магнит к стенке пузырька с ферромагнитной жидкость часть жидкости примагнитилас к стенке, затвердела и изменила свою форму (см. фото)

Когда я положил магнит на дно и перевернул пузырек, все его содержимое стало твердым и не стекало сверху вниз.

Когда я убрал магнит, твердое вещество стало превращаться в жидкость и стекло сверху вниз

С помощью пипетки я перелил часть ферромагнитной жидкости на пластиковый диск

Обратите внимание - это жидкость!!!

Вот что произошло с жидкостью на которую воздействует магнит. Форма похожа на иголки ежика.

При перемещении магнита часть твердой жидкости переместилась вместе с ним, оставшаяся стала принимать жидкую форму.

Моя младшая сестра захотела сделать ферромагнитного котика, у которого может пониматься шерсть дыбом.

На фанерке, оклеенной фольгой, с помощью пластилина я сделал очертания кота и заполнил его с помощью пипетки моей ферромагнитной жидкостью

Вот что получилось при поднесении магнита снизу

…хвост дыбом…

Мой ферромагнитный ежик

Исследуем…..

2.8. Опыт № 7. Изучение свойств феррмагнитной жидкости. Способность проникать в микрообъемы (закупорка отверстия)

В последнем эксперименте я пытался понять, как можно с помощью внешнего магнита закрывать отверстия от течи. Для этого я сначала налил мою жидкость в пластмассовую колбу с большим отверстием внизу. Потом поднес магнит к стенке рядом с отверстием и поднял колбу. Затвердевшая под действием магнита жидкость препятствовала вытеканию остальной жидкой части. Как только я убрал магнит, все вытекло из колбы.

3. Практическое применение

1. Применение ферромагнитных жидкостей:

2. На основе ферромагнитной жидкости делают радиопоглощающие покрытия на самолеты.

3. Создатели знаменитого Ferrari используют магнитореологическую жидкость в подвеске автомобиля: манипулируя магнитом, водитель может сделать подвеску в любой момент более жесткой или более мягкой.

4. Ферромагнитная жидкость используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим глушителем, подавляя нежелательный резонанс. Ферромагнитная жидкость удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой

5. Ферромагнитные жидкости имеют множество применений в оптике благодаря их преломляющим свойствам. Среди этих применений измерение удельной вязкости жидкости, помещенной между поляризатором и анализатором, освещаемой гелий-неоновым лазером.

6. В качестве рабочего тела в датчиках угла наклона и акселерометрах.

7. В магнитных сепараторах для разделения и сепарации материалов с различной плотностью. Магнитная жидкость обладает еще одним удивительным, поистине уникальным свойством. В ней, как и в любой жидкости, плавают тела менее плотные и тонут тела более плотные, чем она сама. Но если приложить к ней магнитное поле, то утонувшие тела начинают всплывать. Причем чем сильнее поле, тем более тяжелые тела поднимаются на поверхность. Прикладывая различное по напряженности магнитное поле, можно заставлять всплывать тела с какой-то заданной плотностью. Это свойство магнитной жидкости применяют сейчас для обогащения руды. Ее топят в магнитной жидкости, а затем нарастающим магнитным полем заставляют всплывать сначала пустую породу, а затем уже и тяжелые куски руды. Например, для разделения золота и шлиха.

8. Для очистки водных поверхностей от нефтепродуктов при аварийных разливах и катастрофах.

9. Печатающие и чертежные устройства. Есть печатающие и чертежные устройства, работающие на магнитной жидкости. В краску вносится немного магнитной жидкости, и такая краска выбрызгивается тонкой струйкой на протягиваемую перед ней бумагу. Если струю ничем не отклонять, то будет начерчена линия. Но на пути струйки поставлены электромагниты, подобно отклоняющим электромагнитам кинескопа телевизора. Роль потока электронов здесь играет тонкая струйка краски с магнитной жидкостью - ее-то и отклоняют электромагниты, и на бумаге остаются буквы, графики, рисунки.

Заключение

В домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Успех опытов зависит от силы магнита и качества ферромагнетика. В случае применения тонер-порошка или девелопера для принтера надо быть уверенным, что он содержит магнитный порошок.

С помощью магнита можно увидеть некоторые свойства ферромагнитной жидкости и понять как работают разные механизмы.

Библиографическая ссылка

Федоров Е.О. ФИЗИКА. ФЕРРОМАГНИТНАЯ ЖИДКОСТЬ // Старт в науке. – 2018. – № 5-5. – С. 783-790;
URL: http://science-start.ru/ru/article/view?id=1200 (дата обращения: 02.01.2020).

И. Сенатская, кандидат химических наук Ф. Байбуртский

Удивительную жидкость, которая притягивается к магниту, образуя что-то вроде ежа, можно получить самостоятельно.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Строго говоря, к магнитному полю неравнодушны - притягиваются или отталкиваются - все вещества. Но на большинство оно действует настолько слабо, что это удается обнаружить только приборами. А можно ли усилить магнитные свойства материала? К примеру, инженеры давно мечтают о системах, которые позволили бы придать некоторым веществам или телам магнитные свойства, при этом абсолютно не разрушая их структуры и мало изменяя их исходные свойства. Наш рассказ о магнитных жидкостях.

Лет пятьдесят назад была запатентована оригинальная конструкция механической муфты - устройства для передачи вращения от одного вала к другому. Муфта содержала смесь железного порошка и масла. Под действием магнитного поля, создаваемого электрическим током, проходящим по катушке, жидкость "твердела", и тогда два вала начинали работать как единое целое. При отсутствии же поля крутящий момент не передавался. Все бы хорошо, не будь такая жидкость капризной: то в ней появлялись комки, то она вдруг не хотела твердеть. Потому магнитные порошковые муфты долго не находили применения (1).

Все изменилось, когда за дело взялись химики и создали устойчивые магнитные жидкости, обладающие хорошей текучестью. В них вводили столь мелкие магнитные частицы, что они никогда не оседали и не сбивались в комок.

Так что же это такое - магнитная жидкость?

Магнитные жидкости представляют собой коллоидные дисперсии магнитных материалов (ферромагнетиков: магнетита, ферритов) с частицами размером от 5 нанометров до 10 микрометров, стабилизированные в полярной (водной или спиртовой) и неполярной (углеводороды и силиконы) средах с помощью поверхностно-активных веществ или полимеров. Они сохраняют устойчивость в течение двух-пяти лет и обладают при этом хорошей текучестью в сочетании с магнитными свойствами (2).

Синтез магнитных жидкостей включает в себя стадии получения частиц очень малых размеров, их стабилизацию в соответствующей жидкости-носителе и испытание полученной дисперсии в гравитационном и магнитном полях.

Способов получения магнитных жидкостей много. Одни основаны на размельчении железа, никеля, кобальта до сотых долей микрона с помощью мельниц, дугового или искрового разряда, с применением сложной аппаратуры и ценой больших затрат труда. А поэтому мы предлагаем воспользоваться другим способом, который разработали отечественные ученые М. А. Лунина, Е. Е. Бибик и Н. П. Матусевич. Он подробно описан в конце статьи. А пока поговорим о вариантах практического применения магнитной жидкости.

Все они основаны на эффектах, которые никаким другим способом создать невозможно. Начнем с самого простого. Довольно часто разнообразные жидкости используются в технике для передачи силы или энергии. Например, ковш небольшого экскаватора приводится в действие давлением масла, поступающего в гидроцилиндры. Главные элементы гидравлической техники - краны, вентили, золотники и клапаны, способные в нужный момент прервать или, наоборот, разрешить течение жидкости. Хотя их делают уже давно, ни один кран надежным не назовешь: его детали подвержены износу. Магнитные жидкости могут перекрывать канал или регулировать расход жидкости, а также менять направление ее потока в трубопроводе (3).

В расширенную часть трубы при помощи внешнего магнита вводят и удерживают там магнитную жидкость. Она играет роль перекрывающего клапана: один канал закрыт, и жидкость по нему не протекает. Если с помощью магнита перевести магнитную жидкость в другой канал трубопровода и перекрыть его, освободится первый. Таким же образом можно регулировать поток жидкости в трубопроводе, предварительно установив на заданном участке трубы электромагнит и введя небольшое количество магнитной жидкости. Поскольку труба расположена вертикально, жидкая среда, накапливающаяся над магнитно-жидкостным клапаном, удерживается до определенного уровня. Как только он будет превышен, клапан под действием силы тяжести начнет отрываться и жидкость будет просачиваться вниз. Особенность устройства состоит в том, что после пробоя вниз проходит только избыточная часть жидкости, а определенный ее объем удерживается над клапаном.

А вот еще один вариант использования магнитных жидкостей. Инженеры считают, что автомобиль может обойтись без коробки передач, если на вал двигателя поставить маховик и кратковременно, сотни раз в секунду, подключать мотор к колесам. Однако все попытки создать такую систему (ее называют импульсной передачей) наталкивались на низкую долговечность переключающего устройства. Магнитно-жидкостные же муфты сцепления практически не изнашиваются и позволяют создать автомобиль с очень низким расходом топлива. Кроме того, магнитная жидкость на основе машинных масел или смазочно-охлаждающих материалов служит прекрасным герметизатором в различного рода уплотнениях, подшипниках трения и качения, сложных узлах станков и машин. Установленные по периметру уплотнения маленькие магниты не позволяют жидкости вытекать из зазора, и работоспособность устройства увеличивается в пять раз!

А преобразовать энергию колебательного движения в электрическую позволяет устройство, представляющее собой катушку, внутри которой находится ампула с магнитной жидкостью (4).

Малейший толчок или изменение наклона приводит к перетеканию жидкости, а значит, и к изменению магнитного потока. Катушка соединена с накопителем энергии (в данном случае - с конденсатором) через выпрямитель. Развиваемое напряжение зависит от числа витков катушки. Подобное устройство может снабжать энергией миниатюрный радиоприемник или электронные часы. Оно способно преобразовывать удары капель дождя по крыше в электрический ток и получать таким образом даровую энергию.

Явление плавания тяжелых тел под действием неоднородного магнитного поля, погруженных в магнитную жидкость, позволило использовать магнитные жидкости в горно-обогатительных процессах. Неоднородное магнитное поле приводит к уплотнению магнитной жидкости, вследствие чего всплывают немагнитные частицы высокой плотности - медные, свинцовые, золотые. Поскольку неоднородность магнитного поля легко изменять в широких пределах, можно заставить плавать частицы определенной плотности. Это стало основой для создания технологии магнитной сепарации руд по плотностям. Смесь частиц различной плотности падает на слой магнитной жидкости, висящий между полюсами электромагнита. Ток в электромагните можно подобрать так, чтобы легкие частицы смеси всплывали в магнитной жидкости, а тяжелые - тонули. Если установить полюса электромагнита наклонно, легкие частицы станут двигаться вдоль поверхности слоя и процесс разделения смеси станет непрерывным: тяжелые частицы провалятся сквозь слой магнитной жидкости и попадут в один приемник, а легкие частицы скатятся по ее поверхности в другой (5).

Когда обычные смазочно-охлаждающие жидкости и способы их подачи неприменимы, магнитные жидкости можно использовать в механизированном ручном инструменте, при работе на большой высоте, в замкнутом изолированном пространстве и других особых условиях. По механизму воздействия на процесс резания магнитные жидкости аналогичны смазочно-охлаждающим материалам, но в зону резания их можно подавать магнитным полем. Под его влиянием повышается смачиваемость и усиливается расклинивающее давление, интенсифицируется смазочное действие, так как улучшаются условия проникновения магнитной жидкости на поверхности контакта. Магнитные жидкости оказывают более сильное охлаждающее действие, так как по теплоемкости и теплопроводности превосходят все смазочно-охлаждающие материалы. При сверлении отверстий в титановых и алюминиевых сплавах немагнитная стружка, смазанная магнитной жидкостью, притягивалась к намагниченному сверлу и легко удалялась из отверстия. Это явление позволяет собирать остатки немагнитных металлов и абразивной пыли, образуемой при шлифовке поверхности.

Магнитные жидкости могут найти применение и в медицине. Противоопухолевые препараты, к примеру, вредны для здоровых клеток. Но если их смешать с магнитной жидкостью и ввести в кровь, а у опухоли расположить магнит, магнитная жидкость, а вместе с ней и лекарство сосредоточиваются у пораженного участка, не нанося вреда всему организму (6).

Магнитные коллоиды можно применять в качестве контрастного средства при рентгеноскопии. Обычно при рентгеноскопической диагностике желудочно-кишечного тракта пользуются кашицей на основе сернокислого бария. Если учесть, что коллоидные ферритовые частицы активно поглощают рентгеновские лучи, то можно говорить об использовании магнитных жидкостей в качестве рентгеноконтрастных веществ для диагностики полых органов. Все процедуры при этом существенно упрощаются.

А теперь выполняем обещание, данное в начале статьи, - даем рецепт водной магнитной жидкости (самой простой в изготовлении среди известных). Запаситесь аптечными весами с разновесами, двумя колбами, химическим стаканом, фильтровальной бумагой и воронкой, хорошим (желательно кольцевым - из динамика) магнитом, небольшой электрической плиткой и фарфоровым стаканчиком на 150-200 мл. Для получения качественной магнитной жидкости необходимо иметь маленькую настольную центрифугу. У вас под рукой должны быть соли двух-и трехвалентного железа, аммиачная вода (25%-ной концентрации), натриевая соль олеиновой кислоты (олеиновое мыло), индикаторная бумага фирмы "Лахема" и дистиллированная вода. Цифры приведены в расчете на 10 граммов твердой магнитной фазы (магнетита) магнитной жидкости.


Получив магнитную жидкость, раскрепостите свою фантазию. Придумайте с нею физический опыт, сделайте занимательную игрушку. Пришлите в редакцию рассказ о своей работе с цветными иллюстрациями. Самые интересные отчеты будут опубликованы. Желаем удачи!